Domains¶
Organizing data assets by business domain and ownership
Domains in OpenMetadata provide a framework for organizing data assets by business function, team ownership, and organizational structure. This domain-driven approach enables federated data governance, clear accountability, and scalable data management across large organizations.
Hierarchy Overview¶
OpenMetadata's domain structure enables hierarchical organization of data assets aligned with business functions:
graph TB
subgraph "Organization Structure"
ORG[Organization<br/>Acme Corp]
D1[Domain: Sales]
D2[Domain: Marketing]
D3[Domain: Finance]
D4[Domain: Engineering]
ORG --> D1
ORG --> D2
ORG --> D3
ORG --> D4
SD1[Sub-domain: B2B Sales]
SD2[Sub-domain: B2C Sales]
SD3[Sub-domain: Digital Marketing]
SD4[Sub-domain: Brand Marketing]
D1 --> SD1
D1 --> SD2
D2 --> SD3
D2 --> SD4
end
subgraph "Data Assets"
TBL1[Table: customers]
TBL2[Table: orders]
DASH1[Dashboard: Sales Metrics]
PIPE1[Pipeline: sales_etl]
SD1 -.->|contains| TBL1
SD1 -.->|contains| TBL2
SD1 -.->|contains| DASH1
SD1 -.->|contains| PIPE1
end
subgraph "Ownership"
TEAM1[Team: Sales Operations]
USR1[User: Alice Smith]
TEAM1 -.->|owns| SD1
USR1 -.->|domain expert| SD1
end
style ORG fill:#7C3AED,color:#fff
style D1 fill:#8B5CF6,color:#fff
style D2 fill:#8B5CF6,color:#fff
style D3 fill:#8B5CF6,color:#fff
style D4 fill:#8B5CF6,color:#fff
style SD1 fill:#A78BFA,color:#fff
style SD2 fill:#A78BFA,color:#fff
style SD3 fill:#A78BFA,color:#fff
style SD4 fill:#A78BFA,color:#fff
style TBL1 fill:#2563EB,color:#fff
style TBL2 fill:#2563EB,color:#fff
style DASH1 fill:#6900c7,color:#fff
style PIPE1 fill:#4facfe,color:#fff
style TEAM1 fill:#00ac69,color:#fff
style USR1 fill:#0061f2,color:#fff Why Use Domains?¶
Domain-Driven Data Organization¶
Domains enable you to organize your data assets by business function rather than technical structure. Instead of navigating through databases and tables, users can discover data through familiar business contexts like "Sales", "Marketing", or "Customer Service".
Traditional Approach:
postgres_prod
├── ecommerce
│ ├── customers
│ ├── orders
│ └── products
├── analytics
│ ├── sales_metrics
│ └── customer_360
└── staging
└── raw_data
Domain-Driven Approach:
Sales Domain
├── customers table
├── orders table
├── sales_metrics dashboard
├── revenue_forecast ML model
└── sales_etl pipeline
Marketing Domain
├── campaigns table
├── leads table
├── conversion_metrics dashboard
└── campaign_performance pipeline
Federated Data Governance¶
Domains enable federated governance where different teams own and manage their domain-specific data assets, while maintaining organization-wide standards and policies.
Clear Accountability¶
Each domain has explicit owners and domain experts, creating clear accountability for data quality, documentation, and governance within that business area.
Scalability¶
As organizations grow, domains provide a scalable way to organize thousands of data assets without creating overwhelming complexity.
Domain Types¶
Business Domains¶
Purpose: Align with business functions or departments
Examples:
Sales- All sales-related data assetsMarketing- Marketing campaigns, leads, analyticsFinance- Financial reporting, accounting dataCustomerService- Support tickets, customer interactionsHumanResources- Employee data, payroll, recruiting
When to use: When organizing data by business function or department
Product Domains¶
Purpose: Align with product lines or offerings
Examples:
ECommercePlatform- Online shopping product dataMobileApp- Mobile application analyticsB2BPortal- Business customer portal dataPaymentServices- Payment processing data
When to use: When your organization is product-centric
Data Platform Domains¶
Purpose: Align with data platform capabilities
Examples:
DataWarehouse- Analytical data warehouse assetsDataLake- Raw data lake storageStreamingPlatform- Real-time streaming dataMachineLearning- ML models and feature stores
When to use: For platform-focused data organization
Geographical Domains¶
Purpose: Organize by geography or region
Examples:
NorthAmerica- North American operations dataEurope- European market dataAsiaPacific- APAC region data
When to use: For multi-regional organizations with data residency requirements
Real-World Examples¶
Example 1: E-Commerce Company¶
graph TB
ORG[Acme E-Commerce]
D1[Sales Domain]
D2[Marketing Domain]
D3[Product Domain]
D4[Operations Domain]
ORG --> D1
ORG --> D2
ORG --> D3
ORG --> D4
subgraph "Sales Domain Assets"
D1 -.-> A1[customers table]
D1 -.-> A2[orders table]
D1 -.-> A3[sales_metrics dashboard]
D1 -.-> A4[revenue_etl pipeline]
end
subgraph "Marketing Domain Assets"
D2 -.-> B1[campaigns table]
D2 -.-> B2[leads table]
D2 -.-> B3[attribution_model ML]
D2 -.-> B4[marketing_dashboard]
end
subgraph "Product Domain Assets"
D3 -.-> C1[catalog table]
D3 -.-> C2[inventory table]
D3 -.-> C3[recommendations ML]
end
subgraph "Operations Domain Assets"
D4 -.-> D1A[warehouse table]
D4 -.-> D2A[shipments table]
D4 -.-> D3A[logistics_dashboard]
end
subgraph "Ownership"
T1[Team: Sales Ops] -.-> D1
T2[Team: Marketing Analytics] -.-> D2
T3[Team: Product Management] -.-> D3
T4[Team: Operations] -.-> D4
end
style ORG fill:#7C3AED,color:#fff
style D1 fill:#8B5CF6,color:#fff
style D2 fill:#8B5CF6,color:#fff
style D3 fill:#8B5CF6,color:#fff
style D4 fill:#8B5CF6,color:#fff
style T1 fill:#00ac69,color:#fff
style T2 fill:#00ac69,color:#fff
style T3 fill:#00ac69,color:#fff
style T4 fill:#00ac69,color:#fff Domain Structure:
- Sales Domain (Owner: Sales Operations Team)
- Contains: Customer data, order transactions, revenue metrics
- Assets: 15 tables, 5 dashboards, 8 pipelines
-
Domain experts: Sales analytics team
-
Marketing Domain (Owner: Marketing Analytics Team)
- Contains: Campaign data, lead tracking, attribution models
- Assets: 12 tables, 7 dashboards, 3 ML models
-
Domain experts: Marketing data scientists
-
Product Domain (Owner: Product Management Team)
- Contains: Product catalog, inventory, recommendations
- Assets: 10 tables, 2 ML models, 4 dashboards
-
Domain experts: Product analysts
-
Operations Domain (Owner: Operations Team)
- Contains: Warehouse operations, logistics, fulfillment
- Assets: 8 tables, 6 pipelines, 3 dashboards
- Domain experts: Operations analytics
Example 2: Financial Services Company¶
graph TB
ORG[FinCorp Financial Services]
D1[Retail Banking]
D2[Commercial Banking]
D3[Wealth Management]
D4[Risk Management]
D5[Compliance]
ORG --> D1
ORG --> D2
ORG --> D3
ORG --> D4
ORG --> D5
SD1[Checking Accounts]
SD2[Credit Cards]
SD3[Loans]
D1 --> SD1
D1 --> SD2
D1 --> SD3
subgraph "Checking Accounts Sub-domain"
SD1 -.-> A1[accounts table]
SD1 -.-> A2[transactions table]
SD1 -.-> A3[account_dashboard]
end
subgraph "Risk Management Domain"
D4 -.-> R1[credit_risk_model ML]
D4 -.-> R2[fraud_detection ML]
D4 -.-> R3[risk_metrics dashboard]
end
subgraph "Compliance Domain"
D5 -.-> C1[audit_logs table]
D5 -.-> C2[compliance_reports]
D5 -.-> C3[regulatory_filings]
end
style ORG fill:#7C3AED,color:#fff
style D1 fill:#8B5CF6,color:#fff
style D2 fill:#8B5CF6,color:#fff
style D3 fill:#8B5CF6,color:#fff
style D4 fill:#8B5CF6,color:#fff
style D5 fill:#8B5CF6,color:#fff
style SD1 fill:#A78BFA,color:#fff
style SD2 fill:#A78BFA,color:#fff
style SD3 fill:#A78BFA,color:#fff Domain Organization:
- Top-level Domains: Business lines (Retail, Commercial, Wealth Management)
- Cross-functional Domains: Risk and Compliance
- Sub-domains: Product-specific (Checking, Credit Cards, Loans)
- Data Governance: Domain-specific glossaries and policies
- Compliance: Domain-scoped access controls and audit trails
Example 3: Healthcare Organization¶
graph TB
ORG[HealthCare Plus]
D1[Clinical Operations]
D2[Patient Care]
D3[Billing & Finance]
D4[Research]
D5[Administration]
ORG --> D1
ORG --> D2
ORG --> D3
ORG --> D4
ORG --> D5
subgraph "Clinical Operations"
D1 -.-> CL1[ehr_data table<br/>PHI.Sensitive]
D1 -.-> CL2[lab_results table<br/>PHI.Sensitive]
D1 -.-> CL3[imaging_data storage<br/>PHI.Sensitive]
end
subgraph "Patient Care"
D2 -.-> PC1[appointments table]
D2 -.-> PC2[care_plans table<br/>PHI.Sensitive]
D2 -.-> PC3[patient_outcomes ML]
end
subgraph "Research"
D4 -.-> RS1[de_identified_data table]
D4 -.-> RS2[clinical_trials table]
D4 -.-> RS3[research_models ML]
end
subgraph "Governance"
POL1[HIPAA Policy] -.-> D1
POL1 -.-> D2
POL2[De-identification Policy] -.-> D4
end
style ORG fill:#7C3AED,color:#fff
style D1 fill:#8B5CF6,color:#fff
style D2 fill:#8B5CF6,color:#fff
style D3 fill:#8B5CF6,color:#fff
style D4 fill:#8B5CF6,color:#fff
style D5 fill:#8B5CF6,color:#fff
style POL1 fill:#f5576c,color:#fff
style POL2 fill:#f5576c,color:#fff Compliance-Driven Domains:
- Sensitivity Classification: PHI tags automatically applied at domain level
- Access Control: Domain-scoped policies enforce HIPAA compliance
- Data Governance: Domain-specific data stewards ensure regulatory compliance
- De-identification: Research domain uses de-identified data only
- Audit Trails: All access to clinical domains logged for compliance
Benefits¶
1. Simplified Discovery¶
Users find data by business context, not technical location. Sales analysts browse the "Sales Domain" instead of searching through database schemas.
2. Clear Ownership¶
Each domain has designated owners and experts, eliminating confusion about who is responsible for data quality and governance.
3. Federated Governance¶
Domain owners manage governance within their area while maintaining organization-wide standards. This scales as organizations grow.
4. Contextual Understanding¶
Data assets within a domain share business context, making it easier to understand relationships and usage patterns.
5. Access Control¶
Domain-scoped permissions enable fine-grained access control based on business need-to-know.
6. Data Products¶
Domains naturally group related assets into data products that can be discovered, understood, and consumed as cohesive units.
7. Organizational Alignment¶
Domains mirror organizational structure, making data governance align with existing business processes.
8. Scalability¶
Hierarchical domain structure scales from small teams to enterprise organizations with thousands of assets.
Domain Hierarchy Patterns¶
Pattern 1: Business Function Hierarchy¶
Organization
├── Sales
│ ├── B2B Sales
│ │ ├── Enterprise
│ │ └── Mid-Market
│ └── B2C Sales
│ ├── Direct
│ └── Channel
├── Marketing
│ ├── Digital Marketing
│ ├── Brand Marketing
│ └── Partner Marketing
└── Finance
├── Accounting
├── FP&A
└── Treasury
Use case: Aligning domains with organizational chart
Pattern 2: Product-Centric Hierarchy¶
Organization
├── E-Commerce Platform
│ ├── Storefront
│ ├── Checkout
│ └── Recommendations
├── Mobile App
│ ├── iOS
│ └── Android
└── B2B Portal
├── Self-Service
└── Managed Services
Use case: Product-focused organization
Pattern 3: Geographic Hierarchy¶
Organization
├── North America
│ ├── United States
│ │ ├── East Region
│ │ └── West Region
│ └── Canada
├── Europe
│ ├── UK
│ └── EU
└── Asia Pacific
├── Japan
└── Australia
Use case: Multi-regional organization with data residency requirements
Pattern 4: Hybrid Hierarchy¶
Organization
├── Sales (Business Function)
│ ├── North America (Geography)
│ │ ├── B2B (Customer Segment)
│ │ └── B2C (Customer Segment)
│ └── Europe (Geography)
│ ├── B2B (Customer Segment)
│ └── B2C (Customer Segment)
└── Engineering (Business Function)
├── Data Platform (Product)
└── ML Platform (Product)
Use case: Complex organizations with multiple organizing principles
Common Patterns¶
Pattern 1: Domain with Sub-domains¶
Domain: Sales
├── Owner: Sales Operations Team
├── Domain Experts: [alice.smith, bob.jones]
├── Sub-domains:
│ ├── B2B Sales
│ │ └── Owner: Enterprise Sales Team
│ └── B2C Sales
│ └── Owner: Consumer Sales Team
└── Data Products:
├── Customer 360
└── Sales Analytics
Hierarchical organization with clear ownership at each level.
Pattern 2: Cross-Functional Domain Assets¶
Domain: Customer Data
├── Owner: Customer Data Team
├── Assets from multiple sources:
│ ├── CRM Database (from Sales)
│ ├── Support Tickets (from Customer Service)
│ ├── Product Usage (from Engineering)
│ └── Marketing Campaigns (from Marketing)
└── Consumers:
├── Sales Team (customer insights)
├── Marketing Team (segmentation)
└── Product Team (usage analytics)
Domain consolidates related assets from across the organization.
Pattern 3: Data Product Domain¶
Domain: Customer 360
├── Type: Data Product
├── Owner: Customer Analytics Team
├── Components:
│ ├── customer_unified table (source of truth)
│ ├── customer_segmentation ML model
│ ├── customer_360_dashboard
│ └── customer_enrichment pipeline
└── SLA:
├── Freshness: < 1 hour
├── Quality: > 99.5%
└── Availability: 99.9%
Domain represents a complete data product with SLA guarantees.
Domain Governance¶
Domain Ownership Model¶
graph LR
subgraph "Domain Governance"
DOM[Domain: Sales]
OWNER[Domain Owner<br/>Sales Ops Team]
EXPERT1[Domain Expert<br/>Alice Smith]
EXPERT2[Domain Expert<br/>Bob Jones]
DOM --> OWNER
DOM --> EXPERT1
DOM --> EXPERT2
end
subgraph "Responsibilities"
OWNER -.->|manages| R1[Data Quality]
OWNER -.->|manages| R2[Asset Documentation]
OWNER -.->|manages| R3[Access Policies]
EXPERT1 -.->|provides| R4[Business Context]
EXPERT2 -.->|provides| R5[Technical Guidance]
end
style DOM fill:#8B5CF6,color:#fff
style OWNER fill:#00ac69,color:#fff
style EXPERT1 fill:#0061f2,color:#fff
style EXPERT2 fill:#0061f2,color:#fff Roles:
- Domain Owner: Accountable for all assets in domain
- Domain Experts: Provide subject matter expertise
- Asset Owners: Responsible for individual assets within domain
Entity Specifications¶
Explore the complete domain entity specification:
| Entity | Description | Specification |
|---|---|---|
| Domain | Business domain container for data assets | View Spec |
The domain specification includes: - Complete field reference - JSON Schema definition - RDF/OWL ontology representation - JSON-LD context and examples - Relationship mappings - API operations
View Domain Entity Specification →
Best Practices¶
1. Align with Organization Structure¶
Create domains that match your organization's natural boundaries. If you have a Sales department, create a Sales domain.
2. Clear Ownership¶
Always assign explicit owners to domains. Avoid shared or ambiguous ownership.
3. Limit Hierarchy Depth¶
Keep domain hierarchy to 2-3 levels maximum. Deeper hierarchies become difficult to navigate.
4. Consistent Naming¶
Use consistent naming conventions across all domains (e.g., always use singular or always use plural).
5. Document Domain Scope¶
Clearly document what types of assets belong in each domain to avoid confusion.
6. Domain Experts¶
Assign domain experts who can provide business context and answer questions about domain assets.
7. Regular Reviews¶
Quarterly review domain structure to ensure it still aligns with organizational changes.
8. Start Simple¶
Begin with top-level domains aligned with major business functions. Add sub-domains as needed.
Next Steps¶
- Explore Domain Entity - See complete domain specification
- Plan Domain Structure - Map your organization's business functions to domains
- Assign Ownership - Identify domain owners and experts for each domain
- Create Domains - Use the API or UI to create your domain hierarchy
- Organize Assets - Assign existing data assets to appropriate domains
- Define Governance - Establish domain-specific governance policies